Parameter Optimization and Control Strategy of Hybrid Electric Vehicle Transmission System based on Improved GA Algorithm

Author:

Luo Daobao1,Ji Wujun1,Hu Xin1

Affiliation:

1. Henan Polytechnic, Zhengzhou 450046, China

Abstract

Most of the traditional hybrid electric vehicles (HEVs) choose to optimize the transmission ratio parameters, and the parameter changes of the whole vehicle and other components are only calculated as fixed values. It is difficult to give consideration to the optimization of the economy and power of hybrid vehicles. Therefore, the research proposes to build the transmission ratio, the required power of the vehicle’s working mode, and other models through the dynamic analysis. The parameters of the whole vehicle are optimized on the basis of parameter matching. At the same time, this paper chooses to adopt a hybrid optimization algorithm, combining particle swarm optimization (PSO) and genetic algorithm (GA). The weighted average method and constraint method are used to design the fitness function. The simulation experiment is carried out by Cruise software and MATLAB. Compare the iterative fitness of the PSO-GA algorithm with the traditional PSO and GA algorithm. It can be concluded that PSO-GA converges at the 12th iteration, with an average optimal fitness of 0.5239, which is higher than the traditional algorithm. At the same time, the parameter optimization of PSO-GA and the simulated annealing algorithm is compared. It is found that in the same task, the gasoline consumption after SA algorithm optimization is 0.561 L, while the fuel consumption under PSO-GA algorithm optimization is 0.475 L. The method proposed in this study has improved the power and economy of the HEV model and is effective.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3