Enhancing the yaw stability and the manoeuvrability of a heavy vehicle in difficult scenarios by an emergency threat avoidance manoeuvre

Author:

Yakub Fitri1,Abu Aminudin1,Mori Yasuchika2

Affiliation:

1. Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

2. Graduate School of System Design, Tokyo Metropolitan University, Tokyo, Japan

Abstract

This study aims to investigate the switching model predictive control strategy for a heavy-vehicle system in order to coordinate the actuator between active rear steering and differential braking control manoeuvres for emergency threat avoidance in difficult environments. We present the controller performances for the lateral dynamic behaviour, the yaw stability and the manoeuvrability of a vehicle when subjected to a sudden threat or disturbance such as a gust of wind, a road bank angle or a split- μ road surface in order to enable a fast safe lane-change trajectory to be followed. The vehicle was driven at a medium forward speed and a high forward speed in order to investigate the effectiveness of the proposed approach in avoiding the threat, maintaining the stability and enablinge a fast safe lane-change trajectory to be followed. We compared two different controllers (a model predictive controller and a switching model predictive controller) for two different control manoeuvres (active rear steering with differential braking control and active rear steering with direct yaw moment control). The simulation results demonstrate that the proposed switching model predictive control method provides an improved fast safe lane-change manoeuvre in a threat avoidance scenario for both control manoeuvres. It also demonstrated that the proposed active rear steering with differential braking control is more useful for maintaining the stability of the vehicle in a threat avoidance scenario with disturbance effects than is active rear steering with direct yaw moment control.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis and Roll Prevention Control for Distributed Drive Electric Vehicles;World Electric Vehicle Journal;2022-11-07

2. Gain-Scheduled Steering and Braking Coordinated Control in Path Tracking of Intelligent Heavy Vehicles;Journal of Dynamic Systems, Measurement, and Control;2022-08-10

3. A hierarchical adaptive control framework of path tracking and roll stability for intelligent heavy vehicle with MPC;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2020-06-07

4. Integrated Control of Differential Braking and Active Aerodynamic Control for Improving High Speed Stability of Vehicles;International Journal of Automotive Technology;2020-01-24

5. A heuristic investigation into the design of a dynamic yaw controller for a high-speed tracked vehicle;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2019-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3