Analysis and Roll Prevention Control for Distributed Drive Electric Vehicles

Author:

Chang Xiaoyu,Zhang Huanhuan,Yan Shuai,Hu Shengli,Meng Youming

Abstract

This work presents an approach to improve the roll stability of distributed drive electric vehicles (DDEV). The effect of the reaction torque from the in-wheel motor exerts additional roll moment, which is different from traditional vehicles. The additional roll moment can be achieved by active control of the wheel torque adjustment, which achieves a control effect similar to the active suspension. The anti-roll control strategy of decoupling control of roll motion and yaw motion are proposed. The direct yaw moment is calculated by the linear quadratic regulator (LQR) algorithm while the additional rolling moment is calculated by the sliding mode variable structure. For maneuvering rollover caused by excessive lateral acceleration, an anti-rollover control strategy is designed based on differential braking. A fuzzy control theory is used to decide the yaw moment to be compensated. The distribution method of the braking torque applied to the outer wheel alone, and the lateral load transfer rate is the main evaluation index for simulation verification of typical working conditions. The simulation results show that the proposed control strategy for DDEV is effective.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3