Adaptive sliding mode anti-swing control of 4-DOF tower crane based on a nonlinear disturbance observer

Author:

Zhao Chen1,He Qin1ORCID,Zhang Jibin1,Zhu Xiangshuai1,Meng Qinglin2

Affiliation:

1. School of Mechanical and Electrical Engineering, Shandong Jianzhu University, Jinan, Shandong, China

2. Dahan Technology Co., Ltd, Jinan, Shandong, China

Abstract

Tower cranes are widely applied in outdoor environments with inevitable external disturbances, which can reduce transportation efficiency and safety. To improve the transient control performance of the tower crane when transporting goods and to guarantee good robustness, this paper designs an adaptive sliding mode Anti-swing control method based on a nonlinear disturbance observer. Firstly, a 4-DOF tower crane error dynamics model considering external disturbances and air friction is established, and then, a nonlinear disturbance observer is designed to estimate the aggregate disturbance. Further, a disturbance effect indicator (DEI) is set to judge the advantages and disadvantages of the disturbance effect on the tower crane system from a new perspective. Finally, beneficial disturbance effects are organically combined with a sliding mode control method possessing an adaptive mechanism to eliminate payload swing by introducing favorable interference. Using Lyapunov stability analysis in conjunction with the LaSalle invariance principle, the closed-loop system is shown to be asymptotically stable. Simulation results show that the controller proposed in this paper achieves accurate positioning by driving the trolley and the jib, and at the same time, can keep the payload swing angle slight during the working process and eliminate the payload swing angle after accurate positioning. Moreover, it is also robust in the face of external disturbances and system parameter variations.

Funder

Natural Science Foundation of Shandong Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3