Modeling and energy-based sway reduction control for tower crane systems with double-pendulum and spherical-pendulum effects

Author:

Zhang Menghua1ORCID,Zhang Yongfeng1,Ji Bing2,Ma Changhui3,Cheng Xingong1

Affiliation:

1. School of Electrical Engineering, University of Jinan, Jinan, China

2. School of Control Science and Engineering, Shandong University, Jinan, China

3. State Grid Shandong Electric Power Research Institute, Jinan, China

Abstract

As typical underactuated systems, tower crane systems present complicated nonlinear dynamics. For simplicity, the payload swing is traditionally modeled as a single-pendulum in existing works. Actually, when the hook mass is close to the payload mass, or the size of the payload is large, a tower crane may exhibit double-pendulum effects. In addition, existing control methods assume that the hook and the payload only swing in a plane. To tackle the aforementioned practical problems, we establish the dynamical model of the tower cranes with double-pendulum and spherical-pendulum effects. Then, on this basis, an energy-based controller is designed and analyzed using the established dynamic model. To further obtain rapid hook and payload swing suppression and elimination, the swing part is introduced to the energy-based controller. Lyapunov techniques and LaSalle’s invariance theorem are provided to demonstrate the asymptotic stability of the closed-loop system and the convergence of the system states. Simulation results are illustrated to verify the correctness and effectiveness of the designed controller.

Funder

Natural Science Foundation of Shandong Province

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3