Stages prediction of the remaining useful life of rolling bearing based on regularized extreme learning machine

Author:

Wu Chenchen12ORCID,Sun Hongchun12,Zhang Zihan12

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, People’s Republic of China

2. Key Laboratory of Vibration and Control of Aero-Propulsion Systems of Ministry of Education, Northeastern University, Shenyang, People’s Republic of China

Abstract

The prediction of the remaining useful life (RUL) of rolling bearings is an important means to ensure the rotating machinery's safe operation. At present, most of the proposed methods use direct prediction based on bearing vibration signals, which not only have low prediction accuracy but also time-consuming. This paper proposes a staged prediction method, and the regularized learning machine (RELM) based on the proposed sensitive degradation feature is applied to predict RUL of the bearing with high accuracy and speed. Firstly, the relative root mean square value (RRMS) is used to divide the degradation stages of rolling bearings. Secondly, the RRMS indicator is used for multi-step time series prediction in the normal phase of the bearing. Thirdly, in the bearing's degradation stage, the Pearson Correlation Coefficient (PCC) Combined Entropy Weight Method (EWM) feature selection criterion is proposed to predict the RUL of the rolling bearing. Finally, the sensitive degradation feature of the bearing vibration signals is input into RELM to predict the RUL. The bearing data sets of PHM Challenging 2012 are used to verify the effectiveness of the proposed method. Three comparative experiments have been verified to prove the accuracy and rapidity of the proposed method in time series forecasting.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3