Operation stage division and RUL prediction of bearings based on 1DCNN-ON-LSTM

Author:

Guo RunxiaORCID,Li HaonanORCID,Huang ChaoORCID

Abstract

Abstract Remaining useful life (RUL) prediction of bearings is significantly important to ensure reliable operation of bearings. In practice, it is routinely impossible to obtain the full life cycle degradation data of bearings that needs to be used in prediction. The accuracy of the RUL prediction of bearings is often affected by incomplete degradation data. Regarding this situation, this paper proposes a multi-sensor three-stage RUL prediction framework based on the one-dimensional convolutional ordered neuron long short-term memory (1DCNN-ON-LSTM) neural network. Firstly, 1DCNN is used to extract spatial features adaptively from multi-sensor’s data and fuse them into one-dimensional feature. Next, the unsupervised hierarchy mechanism of time series information based ON-LSTM is developed to determine the ‘initial degradation stage point’ and ‘rapid degradation stage point’ of the bearing from the one-dimensional feature. Once the signal features collected by sensors input to the model reach the degradation stage point, select the corresponding sensitive features as input and construct the 1DCNN-ON-LSTM model that performs RUL prediction after the degradation stage point to improve the prediction accuracy of the model. Based on the proposed hierarchy mechanism, the bearings’ operation process is divided into three operation stages: normal stage, initial degradation stage and rapid degradation stage. Finally, the experiments verify that the proposed method can effectively divide the operation stages of bearings to predict the RUL and improve the generalization ability and prediction accuracy of the model.

Funder

National Natural Science Foundation of China

Project of Aviation Science Foundation

Special Program of Talents Development for Excellent Youth Scholars in Tianjin

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3