Hysteresis modeling of piezoelectric actuator using particle swarm optimization-based neural network

Author:

Zhang Quan1,Shen Xin1,Zhao Jianguo1,Xiao Qing1,Huang Jun2,Wang Yuan3

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China

2. National Research Center of Pumps, Jiangsu University, Zhenjiang, China

3. College of Communication Engineering, Army Engineering University of PLA, Nanjing, China

Abstract

Piezoelectric actuators have been received much attention for the advantages of high precision, no wear and rapid response, etc. However, the intrinsic hysteresis behavior of the piezoelectric materials seriously degraded the output performance of piezoelectric actuators. In this paper, to decrease such nonlinear effects and further improve the output performances of piezoelectric actuators, a modified nonlinear autoregressive moving average with exogenous inputs model, which could describe the rate-dependent hysteresis features of piezoelectric actuators was investigated. In the experiment, the different topologies of the proposed back propagation neural network algorithm were compared and the optimal topology was selected considering both the tracking precision and the structure complexity. The experimental results validated that the modified nonlinear autoregressive moving average with exogenous inputs model featured the hysteresis characteristics description ability with high precision, and the predicted motion matched well with the real trajectory. Then, the initial parameters of the back propagation neural network algorithm were further optimized by particle swarm optimization algorithm. The experimental results also verified that the proposed model based on particle swarm optimization–back propagation neural network algorithm was more accurate than that identified through the conventional back propagation neural network algorithm, and has a better predicting performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3