Research on the Multimodal Digital Teaching Quality Data Evaluation Model Based on Fuzzy BP Neural Network

Author:

Feng Wenyan1ORCID,Feng Fan2ORCID

Affiliation:

1. School of Marxism, Dalian Ocean University, Dalian, Liaoning 116023, China

2. School of Marine Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519000, China

Abstract

We propose in this paper a fuzzy BP neural network model and DDAE-SVR deep neural network model to analyze multimodal digital teaching, establish a multimodal digital teaching quality data evaluation model based on a fuzzy BP neural network, and optimize the initial weights and thresholds of BP neural network by using adaptive variation genetic algorithm. Since the BP neural network is highly dependent on the initial weights and points, the improved genetic algorithm is used to optimize the initial weights and thresholds of the BP neural network, reduce the time for the BP neural network to find the importance and points that satisfy the training termination conditions, and improve the prediction accuracy and convergence speed of the neural network on the teaching quality evaluation results. The entropy value method, a data-based objectivity evaluation method, is introduced as the guidance mechanism of the BP neural network. The a priori guidance sample is obtained by the entropy method. Then, the adaptive variational genetic algorithm is used to optimize the BP neural network model to learn the a priori sample knowledge and establish the evaluation model, which reduces the subjectivity of the BP neural network learning sample. To better reflect and compare the effects of the two neural network evaluation models, BP and GA-BP, the sample data were continued to be input into the original GA and BSA to obtain the evaluation results and errors; then, the evaluation results of the two evaluation models, BP and GA-BP, were compared with the evaluation results of the two algorithms, GA and BSA. It was found that the GA-BP neural network evaluation model has higher accuracy and can be used for multimodal digital teaching quality evaluation, providing a more feasible solution.

Funder

Department of Education of Liaoning Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3