An algorithm for smooth trajectory planning optimization of isotropic translational parallel manipulators

Author:

Azizi Mahmood Reza1,Khani Rahmatolah2

Affiliation:

1. Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

2. Department of Mechanical Engineering, Engineering Faculty, Bu-Ali Sina University, Hamedan, Iran

Abstract

This paper presents a new algorithm for smooth trajectory planning optimization of isotropic translational parallel manipulators (ITPM) that their Jacobian matrices are constant and diagonal over the whole robot workspace. The basic motivation of this work is to formulate the robot kinematic and geometric constraints in terms of optimization variables to reduce the mathematical complexity and running time of the resulting algorithm which are important issues in trajectory planning optimization. To achieve this aim, the end-effector trajectory of ITPMs in Cartesian space is defined using fifth-order B-Splines, and as a main contribution, all of the actuators limitations and robot constraints are formulated in terms of B-Spline parameters with no need of any information about the workspace geometry. Then the total required energy, total time of motion, and maximum absolute value of actuators’ jerk are defined as objective functions and non-dominated sorting genetic algorithm-II (NSGA-II) is used to solve the resulting nonlinear constrained multi-objective optimization problem. Finally, the proposed algorithm is implemented in MATLAB software for Cartesian parallel manipulator (CPM) as a case study, and the results are demonstrated and discussed. The obtained results show the significant performance of the proposed algorithm with no need to evaluate the robot’s constraints and boundaries of its workspace in each point of the end-effector trajectory.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3