A Computer-Assisted Preoperative Path Planning Method for the Parallel Orthopedic Robot

Author:

Li JianORCID,Cui Rui,Su PengORCID,Ma Lifang,Sun HaoORCID

Abstract

Background: Trajectory planning is the premise of the control of orthopedic robots, which is directly related to the safety of the human body. However, to date, the trajectory of orthopedic robots has been restricted to lines and spline curves. This limits the flexibility of the robot and leads to unsatisfactory performance. In this paper, a trajectory planning method based on improved RRT* and B-spline curve is proposed in order to improve the control accuracy and flexibility. Method: Firstly, combined with the shortcomings of current trajectory planning methods and bone docking task analysis, the characteristics of the trajectory for orthopedic robot are illustrated, and the problem is described. Secondly, a sampling strategy and an extension strategy are proposed to solve the optimal problem of the RRT* algorithm. Meanwhile, B-spline curve is selected for path smoothing. Thirdly, based on our orthopedic robot, kinematics analysis is introduced briefly, and hypotonic polynomial is used to fit the joint variables. Finally, a comparative study of the improved RRT*, RRT*, and other algorithms are completed, and the feasibility of the robot’s trajectory is verified by algorithm simulation and platform simulation. Results: Compared with RRT*, shorter path and high node utilization are shown in the improved RRT*, which cut down about 1mm in the average path length and increased about half in the average node utilization. In the meantime, the fitting results are accepted, and the results of algorithm simulation and platform simulation showed good consistency and feasibility. Conclusions: This study revealed that the improved RRT* was superior to RRT*, and the proposed method could be used for the trajectory planning of parallel orthopedic robots, which has some significance for bone fracture and deformity correction.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Fundamental Research Funds for Central Public Welfare Research Institutes

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3