Abstract
Background: Trajectory planning is the premise of the control of orthopedic robots, which is directly related to the safety of the human body. However, to date, the trajectory of orthopedic robots has been restricted to lines and spline curves. This limits the flexibility of the robot and leads to unsatisfactory performance. In this paper, a trajectory planning method based on improved RRT* and B-spline curve is proposed in order to improve the control accuracy and flexibility. Method: Firstly, combined with the shortcomings of current trajectory planning methods and bone docking task analysis, the characteristics of the trajectory for orthopedic robot are illustrated, and the problem is described. Secondly, a sampling strategy and an extension strategy are proposed to solve the optimal problem of the RRT* algorithm. Meanwhile, B-spline curve is selected for path smoothing. Thirdly, based on our orthopedic robot, kinematics analysis is introduced briefly, and hypotonic polynomial is used to fit the joint variables. Finally, a comparative study of the improved RRT*, RRT*, and other algorithms are completed, and the feasibility of the robot’s trajectory is verified by algorithm simulation and platform simulation. Results: Compared with RRT*, shorter path and high node utilization are shown in the improved RRT*, which cut down about 1mm in the average path length and increased about half in the average node utilization. In the meantime, the fitting results are accepted, and the results of algorithm simulation and platform simulation showed good consistency and feasibility. Conclusions: This study revealed that the improved RRT* was superior to RRT*, and the proposed method could be used for the trajectory planning of parallel orthopedic robots, which has some significance for bone fracture and deformity correction.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
Fundamental Research Funds for Central Public Welfare Research Institutes
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献