Affiliation:
1. Department of Intelligent Automation Engineering, National Taipei University of Technology, Taipei, Taiwan, R. O. C.
2. Department of Mechanical Engineering, Texas A&M University at Qatar, Doha, Qatar
Abstract
The work presented here deals with the trajectory-tracking control of omnidirectional mobile robots using a novel robust control technique. The aim is to achieve good tracking performance in the presence of frictional forces and torques, uncertainties, and saturated control inputs. First, a dynamic model of the omnidirectional mobile robot incorporating motor dynamics and frictional forces and torques is derived leading to a higher order system model. Subsequently, a novel cascaded sliding-mode tracking control scheme is proposed to perform trajectory-tracking with the omnidirectional mobile robot, which includes direct and indirect sliding-mode controllers in a cascaded structure. The indirect sliding-mode controller is utilized to attain tracking of the indirect reference input (i.e., desired trajectory) in the first subsystem and constitutes a direct reference input for the second one. A direct sliding-mode controller (i.e., actual control) is then designed to achieve tracking of the direct reference input. This way, the indirect reference input can be effectively manipulated through the proposed cascaded sliding-mode tracking control and individual subsystems are guaranteed to have not only Uniform Ultimate Boundedness but also asymptotic convergent performance. The stability of the closed-loop system is demonstrated via the Lyapunov stability criteria and validated through simulations. It is shown that the cascaded sliding-mode tracking control leads to good trajectory-tracking performance in the presence of uncertainties, friction, and saturated control input.
Subject
Applied Mathematics,Control and Optimization,Instrumentation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献