Accurate trajectory tracking control with adaptive neural networks for omnidirectional mobile robots subject to unmodeled dynamics

Author:

da Silva Lima Gabriel,Moreira Victor Ramon Firmo,Bessa Wallace MoreiraORCID

Abstract

AbstractOmnidirectional mobile robots have gained a lot of attention in recent years due to their maneuverability capabilities. However, ensuring accurate trajectory tracking with this class of robots is still challenging control system designers. In this work, a novel intelligent controller is introduced for accurate trajectory tracking of omnidirectional robots subject to unstructured uncertainties. An adaptive neural network is adopted within a Lyapunov-based nonlinear control scheme to deal with frictional forces and other unmodeled dynamics or external disturbances that may occur. Online learning, rather than supervised offline training, is employed to allow the robot to learn on its own how to compensate for uncertainties and disturbances by interacting with the environment. The adoption of a combined error signal as the single input in the neural network significantly reduces the computational complexity of the disturbance compensation scheme and enables the resulting intelligent controller to be implemented in the embedded hardware of mobile robots. The boundedness and convergence properties of the proposed control scheme are proved by means of a Lyapunov-like stability analysis. The effectiveness of the proposed intelligent controller is numerically evaluated and experimentally validated using an omnidirectional mobile robot. The comparative analyses of the obtained results show that the adoption of an intelligent compensation scheme based on adaptive neural networks allows reductions of more than $$95\%$$ 95 % in the tracking error, thus guaranteeing an accurate tracking and confirming the great superiority of the proposed control strategy.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

University of Turku (UTU) including Turku University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,General Engineering,Aerospace Engineering,Automotive Engineering,Industrial and Manufacturing Engineering,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3