Abstract
AbstractOmnidirectional mobile robots have gained a lot of attention in recent years due to their maneuverability capabilities. However, ensuring accurate trajectory tracking with this class of robots is still challenging control system designers. In this work, a novel intelligent controller is introduced for accurate trajectory tracking of omnidirectional robots subject to unstructured uncertainties. An adaptive neural network is adopted within a Lyapunov-based nonlinear control scheme to deal with frictional forces and other unmodeled dynamics or external disturbances that may occur. Online learning, rather than supervised offline training, is employed to allow the robot to learn on its own how to compensate for uncertainties and disturbances by interacting with the environment. The adoption of a combined error signal as the single input in the neural network significantly reduces the computational complexity of the disturbance compensation scheme and enables the resulting intelligent controller to be implemented in the embedded hardware of mobile robots. The boundedness and convergence properties of the proposed control scheme are proved by means of a Lyapunov-like stability analysis. The effectiveness of the proposed intelligent controller is numerically evaluated and experimentally validated using an omnidirectional mobile robot. The comparative analyses of the obtained results show that the adoption of an intelligent compensation scheme based on adaptive neural networks allows reductions of more than $$95\%$$
95
%
in the tracking error, thus guaranteeing an accurate tracking and confirming the great superiority of the proposed control strategy.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
University of Turku (UTU) including Turku University Central Hospital
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,General Engineering,Aerospace Engineering,Automotive Engineering,Industrial and Manufacturing Engineering,Applied Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献