Modeling and Robust Low Level Control of an Omnidirectional Mobile Robot

Author:

Comasolivas Ramon1,Quevedo Joseba1,Escobet Teresa2,Escobet Antoni3,Romera Juli4

Affiliation:

1. Department of Automatic Control, Center for Supervision, Safety, and Automatic Control, Technical University of Catalonia, BarcelonaTECH, Terrassa 08222, Spain e-mail:

2. Department of Mining, Industrial, and ICT Engineering, Center for Supervision, Safety, and Automatic Control, Technical University of Catalonia, BarcelonaTECH, Manresa 08240, Spain e-mail:

3. Department of Mining, Industrial and ICT Engineering, Technical University of Catalonia, BarcelonaTECH, Manresa 08240, Spain e-mail:

4. Center for Supervision, Safety, and Automatic Control, Technical University of Catalonia, BarcelonaTECH, Terrassa 08222, Spain e-mail:

Abstract

This paper presents the modeling and robust low-level control design of a redundant mobile robot with four omnidirectional wheels, the iSense Robotic (iSRob) platform, that was designed to test safe control algorithms. iSRob is a multivariable nonlinear system subject to parameter uncertainties mainly due to friction forces. A multilinear model is proposed to approximate the behavior of the system, and the parameters of these models are estimated from closed-loop experimental data applying Gauss–Newton techniques. A robust control technique, quantitative feedback theory (QFT), is applied to design a proportional–integral (PI) controller for robust low-level control of the iSRob system, being this the main contribution of the paper. The designed controller is implemented, tested, and compared with a gain-scheduling PI-controller based on pole assignment. The experimental results show that robust stability and control effort margins against system uncertainties are satisfied and demonstrate better performance than the other controllers used for comparison.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3