Affiliation:
1. Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
2. Agile and Dexterous Robotics Laboratory, ETH Zurich, Zürich, Switzerland
Abstract
Robots with legs and arms have the potential to support humans in dangerous, dull or dirty tasks. A major motivation behind research on such robots is their potential versatility. However, these robots come at a high price in mechanical and control complexity. Hence, until they can demonstrate a clear advantage over their simpler counterparts, robots with arms and legs will not fulfill their true potential. In this paper, we discuss the opportunities for versatile robots that arise by actively controlling the mechanical impedance of joints and particularly legs. In contrast to passive elements such as springs, active impedance is achieved by torque-controlled joints allowing real-time adjustment of stiffness and damping. Adjustable stiffness and damping in real-time is a fundamental building block towards versatility. Experiments with our 80 kg hydraulic quadruped robot HyQ demonstrate that active impedance alone (i.e. no springs in the structure) can successfully emulate passively compliant elements during highly dynamic locomotion tasks (running, jumping and hopping); and that no springs are needed to protect the actuation system. Here we present results of a flying trot, also referred to as a running trot. To the best of the authors’ knowledge this is the first time a flying trot has been successfully implemented on a robot without passive elements such as springs. A critical discussion on the pros and cons of active impedance concludes the paper. This article is an extension of our previous work presented at the International Symposium on Robotics Research (ISRR) 2013.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
125 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献