Locally active globally stable dynamical systems: Theory, learning, and experiments

Author:

Figueroa Nadia12,Billard Aude2

Affiliation:

1. Massachusetts Institute of Technology (MIT), Computer Science and Artificial Intelligence Lab (CSAIL), Cambridge, MA, USA

2. École Polytechnique Fédérale de Lausanne (EPFL), Learning Algorithms and Systems Laboratory (LASA), Lausanne, Switzerland

Abstract

State-dependent dynamical systems (DSs) offer adaptivity, reactivity, and robustness to perturbations in motion planning and physical human–robot interaction tasks. Learning DS-based motion plans from non-linear reference trajectories is an active research area in robotics. Most approaches focus on learning DSs that can (i) accurately mimic the demonstrated motion, while (ii) ensuring convergence to the target, i.e., they are globally asymptotically (or exponentially) stable. When subject to perturbations, a compliant robot guided with a DS will continue following the next integral curves of the DS towards the target. If the task requires the robot to track a specific reference trajectory, this approach will fail. To alleviate this shortcoming, we propose the locally active globally stable DS (LAGS-DS), a novel DS formulation that provides both global convergence and stiffness-like symmetric attraction behaviors around a reference trajectory in regions of the state space where trajectory tracking is important. This allows for a unified approach towards motion and impedance encoding in a single DS-based motion model, i.e., stiffness is embedded in the DS. To learn LAGS-DS from demonstrations we propose a learning strategy based on Bayesian non-parametric Gaussian mixture models, Gaussian processes, and a sequence of constrained optimization problems that ensure estimation of stable DS parameters via Lyapunov theory. We experimentally validated LAGS-DS on writing tasks with a KUKA LWR 4+ arm and on navigation and co-manipulation tasks with iCub humanoid robots.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Motion optimization based on hierarchical iterative parameter learning for complicated trajectory;Robotic Intelligence and Automation;2024-06-07

2. Learning Complex Motion Plans using Neural ODEs with Safety and Stability Guarantees;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. Safe Execution of Learned Orientation Skills with Conic Control Barrier Functions;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

4. Learning Barrier-Certified Polynomial Dynamical Systems for Obstacle Avoidance with Robots;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. Globally Stable Neural Imitation Policies;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3