Motion optimization based on hierarchical iterative parameter learning for complicated trajectory

Author:

Guo Yi,Huang TianYi,Huang Haohui,Zhao Huangting,Liu Weitao

Abstract

Purpose The purpose of this paper is to propose an accurate and practical imitation learning for robotics. The modified dynamic movement primitives (DMPs), global fitting DMPs (GLDMPs), is presented. Framework design, theoretical derivation and stability proof of GLDMPs are discussed in the paper. Design/methodology/approach Based on the DMPs, the hierarchical iterative parameter adaptive framework is developed as the hierarchical iteration stage of the GLDMPs to tune the designed parameters adaptively to extract richer features. Inspired by spatial transformations, the coupling analytical module which can be regarded as a reversible transformation is proposed to analyze the high-dimensional coupling information and transfer it to trajectory. Findings With the proposed framework and module, DMPs derive majority features of the demonstration and cope with three-dimensional rotations. Moreover, GLDMPs achieve favorable performance without specialized knowledge. The modified method has been demonstrated to be stable and convergent through inference. Originality/value GLDMPs have an advantage in accuracy, adaptability and practicality for it is capable of adaptively computing parameters to extract richer features and handling variations in coupling information. With demonstration and simple parameter settings, GLDMPs can exhibit excellent and stable performance, accomplish learning and generalize in other regions. The proposed framework and module in the paper are useful for imitation learning in robotics and could be intuitive for similar imitation learning methods.

Publisher

Emerald

Reference36 articles.

1. Adaptation of manipulation skills in physical contact with the environment to reference force profiles;Autonomous Robots,2015

2. Geometry-aware dynamic movement primitives;2020 IEEE International Conference on Robotics and Automation (ICRA),2020

3. Compliant movement primitives in a bimanual setting;2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids),2017

4. A novel method of motion planning for an anthropomorphic arm based on movement primitives;IEEE/ASME Transactions on Mechatronics,2012

5. Locally active globally stable dynamical systems: theory, learning, and experiments;The International Journal of Robotics Research,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3