Sparse roadmap spanners for asymptotically near-optimal motion planning

Author:

Dobson Andrew1,Bekris Kostas E.1

Affiliation:

1. Computer Science Department, Rutgers University, Piscataway, NJ, USA

Abstract

Asymptotically optimal planners, such as PRM*, guarantee that solutions approach optimal as the number of iterations increases. Roadmaps with this property, however, may grow too large for storing on resource-constrained robots and for achieving efficient online query resolution. By relaxing optimality, asymptotically near-optimal planners produce sparser graphs by not including all edges. The idea stems from graph spanners, which produce sparse subgraphs that guarantee near-optimality. Existing asymptotically optimal and near-optimal planners, however, include all sampled configurations as roadmap nodes, meaning only infinite-size graphs have the desired properties. To address this limitation, this work describes SPARS, an algorithm that returns a sparse roadmap spanner. The method provides the following properties: (a) probabilistic completeness, (b) asymptotic near-optimality and (c) the probability of adding nodes to the spanner converges to zero as iterations increase. The last point suggests that finite-size data structures with asymptotic near-optimality in continuous spaces may indeed exist. The approach builds simultaneously a dense graph similar to PRM* and its roadmap spanner, meaning that upon construction an infinite-size graph is still needed asymptotically. An extension of SPARS is also presented, termed SPARS2, which removes the dependency on building a dense graph for constructing the sparse roadmap spanner and for which it is shown that the same desirable properties hold. Simulations for rigid-body motion planning show that algorithms for constructing sparse roadmap spanners indeed provide small data structures and result in faster query resolution. The rate of node addition is shown to decrease over time and practically the quality of solutions is considerably better than the theoretical bounds. Upon construction, the memory requirements of SPARS2 are significantly smaller but there is a small sacrifice in the size of the final spanner relative to SPARS.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3