MassMIND: Massachusetts Maritime INfrared Dataset

Author:

Nirgudkar Shailesh1ORCID,DeFilippo Michael2ORCID,Sacarny Michael2,Benjamin Michael3,Robinette Paul1

Affiliation:

1. University of Massachusetts, Lowell, MA, USA

2. MIT Sea Grant, Autonomous Underwater Vehicles Lab, MA, USA

3. Massachusetts Institute of Technology Laboratory for Autonomous Marine Sensing Systems, Cambridge, MA, USA

Abstract

Recent advances in deep learning technology have triggered radical progress in the autonomy of ground vehicles. Marine coastal Autonomous Surface Vehicles (ASVs) that are regularly used for surveillance, monitoring, and other routine tasks can benefit from this autonomy. Long haul deep sea transportation activities are additional opportunities. These two use cases present very different terrains—the first being coastal waters—with many obstacles, structures, and human presence while the latter is mostly devoid of such obstacles. Variations in environmental conditions are common to both terrains. Robust labeled datasets mapping such terrains are crucial in improving the situational awareness that can drive autonomy. However, there are only limited such maritime datasets available and these primarily consist of optical images. Although, long wave infrared (LWIR) is a strong complement to the optical spectrum that helps in extreme light conditions, a labeled public dataset with LWIR images does not currently exist. In this paper, we fill this gap by presenting a labeled dataset of over 2900 LWIR segmented images captured in coastal maritime environment over a period of 2 years. The images are labeled using instance segmentation and classified into seven categories—sky, water, obstacle, living obstacle, bridge, self, and background. We also evaluate this dataset across three deep learning architectures (UNet, PSPNet, DeepLabv3) and provide detailed analysis of its efficacy. While the dataset focuses on the coastal terrain, it can equally help deep sea use cases. Such terrain would have less traffic, and the classifier trained on cluttered environment would be able to handle sparse scenes effectively. We share this dataset with the research community with the hope that it spurs new scene understanding capabilities in the maritime environment.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Reference34 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Marine vessel detection dataset and benchmark for unmanned surface vehicles;Applied Ocean Research;2024-01

2. Dissemination effect of data papers on scientific datasets;Journal of the Association for Information Science and Technology;2023-11-07

3. Online Self-Supervised Thermal Water Segmentation for Aerial Vehicles;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

4. LaRS: A Diverse Panoptic Maritime Obstacle Detection Dataset and Benchmark;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. MassMIND: Massachusetts Maritime INfrared Dataset;The International Journal of Robotics Research;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3