Computationally efficient evaluation of optimum homogeneous charge compression ignition operating range with accelerated multizone engine cycle simulation

Author:

Garcia-Guendulain Juan Manuel12ORCID,Ramirez-Barron Alejandro12,Riesco-Avila José Manuel1ORCID,Whitesides Russell2ORCID,Aceves Salvador M2

Affiliation:

1. University of Guanajuato, Salamanca, Mexico

2. Lawrence Livermore National Laboratory, Livermore, CA, USA

Abstract

The very intensive calculations necessary to define a performance map requiring evaluation of over a hundred individual operating points can be efficiently conducted with accelerated multizone for engine cycle simulation, leading to a definition of regions of acceptable and optimum homogeneous charge compression ignition operation. Accelerated multizone for engine cycle simulation has the virtue of enabling accurate evaluation of many operating conditions based on thermal stratification data from a single fluid mechanics run at motored conditions. This is possible because thermal stratification is more sensitive to engine geometry than to operating conditions. In this article, accuracy of accelerated multizone for engine cycle simulation is demonstrated by comparison with experimental data for iso-octane homogeneous charge compression ignition operation over a broad range of lean equivalence ratios (0.14–0.28). The validated accelerated multizone for engine cycle simulation model is then applied to generating a performance map for an engine controlled by appropriately adjusting equivalence ratio and internal exhaust gas recirculation. Regions of acceptable and optimum combustion are identified. It is finally demonstrated that while indicated mean effective pressure remains low for optimum homogeneous charge compression ignition operation (1–4 bar), this is sufficient for a large fraction of typical driving in light-duty vehicles. Much driving including idle can therefore be done in homogeneous charge compression ignition mode at high efficiency and low (essentially zero) NO x and particulate matter emissions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3