An accelerated multi-zone model for engine cycle simulation of homogeneous charge compression ignition combustion

Author:

Kodavasal Janardhan1,McNenly Matthew J2,Babajimopoulos Aristotelis3,Aceves Salvador M2,Assanis Dennis N3,Havstad Mark A2,Flowers Daniel L2

Affiliation:

1. Walter E Lay Automotive Laboratory, University of Michigan, Ann Arbor, MI, USA

2. Lawrence Livermore National Laboratory, Livermore, CA, USA

3. Stony Brook University, Stony Brook, NY, USA

Abstract

We have developed an accelerated multi-zone model for engine cycle simulation (AMECS) of homogeneous charge compression ignition (HCCI) combustion. This model incorporates chemical kinetics and is intended for use in system-level simulation software. A novel methodology to capture thermal stratification in the multi-zone model is proposed. The methodology calculates thermal stratification inside the cylinder based on a single computational fluid dynamics (CFD) calculation for motored conditions. CFD results are used for tuning zone heat loss multipliers that characterize wall heat loss from each individual engine zone based on the assumption that these heat loss multipliers can then be used at operating conditions different from those used in the single CFD run because the functional form of thermal stratification is more dependent on engine geometry than on operating conditions. The model is benchmarked against detailed CFD calculations and fully coupled HCCI CFD chemical kinetics calculations. The results indicate that the heat loss multiplier approach accurately predicts thermal stratification during the compression stroke and (therefore) HCCI combustion. The AMECS model with the thermal stratification methodology and reduced gasoline chemical kinetics shows good agreement with boosted gasoline HCCI experiments over a range of operating conditions, in terms of in-cylinder pressure and heat release rate predictions. The computational advantage of this method derives from the need for only a single motoring CFD run for a given engine, which makes the method very well suited for rapid HCCI calculations in system-level codes such as GT-Power, where it is often desirable to evaluate consecutive engine cycles.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Reference23 articles.

1. An Approach for Formulating Surrogates for Gasoline with Application toward a Reduced Surrogate Mechanism for CFD Engine Modeling

2. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine

3. Andreatta DA. The use of reformed natural gas as a fuel for reciprocating engines. PhD Dissertation, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 1995.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3