Integrated seismic and electromagnetic model building applied to improve subbasalt depth imaging in the Faroe-Shetland Basin

Author:

Panzner Martin1,Morten Jan Petter2,Weibull Wiktor Waldemar3,Arntsen Børge4

Affiliation:

1. Norwegian University of Science and Technology, Institute of Petroleum Technology and Applied Geophysics, Trondheim, Norway and Electromagnetic Geoservices ASA, Trondheim, Norway..

2. EMGS ASA, Trondheim, Norway..

3. University of Stavanger, Department of Petroleum Engineering, Stavanger, Norway..

4. Norwegian University of Science and Technology, Institute of Petroleum Technology and Applied Geophysics, Trondheim, Norway..

Abstract

Subbasalt imaging has gained significant interest in the last two decades, driven by the urge to better understand the geologic structures beneath volcanic layers, which can be up to several kilometers thick. This understanding is crucial for the development and risking of hydrocarbon play models in these areas. However, imaging based on the reflection seismic data alone suffers from severe amplitude transmission losses and interbed multiples in the volcanic sequence, as well as from poor definition of the subbasalt velocity structure. We have considered a sequential imaging workflow, in which the resistivity model from joint controlled-source electromagnetic and magnetotelluric data inversion was used to update the velocity model and to improve the structural definition in the migrated seismic image. The quantitative link between resistivity and velocity was derived from well data. The workflow used standard procedures for seismic velocity analysis, electromagnetic data inversion, and well analysis, and thereby allowed detail control and input based on additional geophysical knowledge and experience in each domain. Using real data sets from the Faroe-Shetland Basin, we can demonstrate that the integration of seismic and electromagnetic data significantly improved the imaging of geologic structures covered by up to several-kilometer-thick extended volcanic sequences. The improved results might alter the interpretation compared with the imaging results from seismic data alone.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3