Time-Lapse 3D CSEM for Reservoir Monitoring Based on Rock Physics Simulation of the Wisting Oil Field Offshore Norway

Author:

Ettayebi Mohammed1ORCID,Wang Shunguo1ORCID,Landrø Martin1

Affiliation:

1. Department of Electronic Systems, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

Abstract

The marine controlled-source electromagnetic (CSEM) method has been used in different applications, such as oil and gas reservoir exploration, groundwater investigation, seawater intrusion studies and deep-sea mineral exploration. Recently, the utilization of the marine CSEM method has shifted from petroleum exploration to active monitoring due to increased environmental concerns related to hydrocarbon production. In this study, we utilize the various dynamic reservoir properties available through reservoir simulation of the Wisting field in the Norwegian part of the Barents Sea. In detail, we first developed geologically consistent rock physics models corresponding to reservoirs at different production phases, and then transformed them into resistivity models. The constructed resistivity models pertaining to different production phases can be used as input models for a finite difference time domain (FDTD) forward modeling workflow to simulate EM responses. This synthetic CSEM data can be studied and analyzed in the light of production-induced changes in the reservoir at different production phases. Our results demonstrate the ability of CSEM data to detect and capture production-induced changes in the fluid content of a producing hydrocarbon reservoir. The anomalous CSEM responses correlating to the reservoir resistivity change increase with the advance of the production phase, and a similar result is shown in anomalous transverse resistance (ATR) maps derived from the constructed resistivity models. Moreover, the responses at 30 Hz with a 3000 m offset resulted in the most pronounced anomalies at the Wisting reservoir. Hence, the method can effectively be used for production-monitoring purposes.

Funder

Research Council of Norway

Sigma2—the National Infrastructure for High-Performance Computing and Data Storage in Norway

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3