Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia

Author:

Franz GesaORCID,Jegen Marion,Moorkamp MaxORCID,Berndt ChristianORCID,Rabbel Wolfgang

Abstract

Abstract. When interpreting geophysical models, we need to establish a link between the models' physical parameters and geological units. To define these connections, it is crucial to consider and compare geophysical models with multiple, independent parameters. Particularly in complex geological scenarios, such as the rifted passive margin offshore Namibia, multi-parameter analysis and joint inversion are key techniques for comprehensive geological inferences. The models resulting from joint inversion enable the definition of specific parameter combinations, which can then be ascribed to geological units. Here we perform a user-unbiased clustering analysis of the two parameters electrical resistivity and density from two models derived in a joint inversion along the Namibian passive margin. We link the resulting parameter combinations to breakup-related lithology and infer the history of margin formation. This analysis enables us to clearly differentiate two types of sediment cover. The first type of sediment cover occurs near the shore and consists of thick, clastic sediments, while the second type of sediment cover occurs further offshore and consists of more biogenic, marine sediments. Furthermore, we clearly identify areas of interlayered massive, and weathered volcanic flows, which are usually only identified in reflection seismic studies as seaward-dipping reflectors. Lastly, we find a distinct difference in the signature of the transitional crust south of and along the supposed hotspot track Walvis Ridge. We ascribe this contrast to an increase in magmatic activity above the volcanic centre along Walvis Ridge and potentially a change in the melt sources or depth of melting. This change of the predominant volcanic signature characterizes a rift-related southern complex and a plume-driven Walvis Ridge regime. All of these observations demonstrate the importance of multi-parameter geophysical analysis for large-scale geological interpretations. Additionally, our results may improve future joint inversions using direct parameter coupling, by providing a guideline for the complex passive margin's parameter correlations.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3