Exploration beyond seismic: The role of electromagnetics and gravity gradiometry in deep water subsalt plays of the Red Sea

Author:

Colombo Daniele1,McNeice Gary1,Raterman Nickolas2,Zinger Mike2,Rovetta Diego1,Sandoval Curiel Ernesto1

Affiliation:

1. Geophysics Technology, EXPEC Advanced Research Center, Saudi Aramco..

2. Red Sea Exploration Department, Saudi Aramco..

Abstract

The Red Sea is characterized by thick salt sequences representing a seal for potential hydrocarbon accumulations within Tertiary formations deposited over deep basement structures. The Red Sea “salt” is characterized by halite concentrations embedded in layered evaporite sequences composed of evaporite and clastic lithologies. Salt complicates seismic exploration efforts in the Red Sea by generating vertical and lateral velocity variations that are difficult to estimate by seismic methods alone. In these conditions, the exploration challenges of independently imaging the subsalt section and provide enhanced velocity model building capabilities were addressed by a multigeophysics strategy involving marine electromagnetics (magnetotellurics and controlled source electromagnetics [CSEM]) and gravity gradiometry surveys colocated with wide azimuth seismic. Three-dimensional inversion of MT and CSEM is performed first with minimal a priori constraints and then by including variable amounts of interpretation in the starting models. The internal variations in the evaporitic overburden, the subsalt, and the basement structures are independently imaged by combined electromagnetic methods and confirmed by new drilling results. CSEM, in particular, provides unprecedented detail of the internal structures within the salt overburden while magnetotellurics provides excellent reconstruction of the base of salt and basement. Gravity gradiometry shows primary sensitivity to the basement and the corresponding 3D inversion provides density distributions structurally consistent with the resistivity volumes. The common-structure, multiparameter models obtained from 3D inversion deliver additional aid to seismic interpreters to further derisk exploration in the Red Sea and provide additional detail to depth imaging velocity models. The reciprocal consistency of the obtained results show promises for extending the work to more analytical integration with seismic such as provided by joint geophysical inversion.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3