Affiliation:
1. Baker Hughes, Inc., Houston, Texas, U.S.A..
Abstract
The effect of formation anisotropy on single-well acoustic imaging was analyzed to provide a simple and effective correction method for the imaging application. We used analytical and synthetic modeling to analyze acoustic reflection moveout in a transversely isotropic (TI) formation for borehole configuration. Far-borehole reflections from a bed generally have small reflection angles to the bed. Thus the reflection moveout away from the borehole is controlled largely by the velocity along the TI-symmetry axis. Consequently, reflection imaging using measured velocity along the borehole can cause errors in the imaged reflector position. By correcting the anisotropy effect in the velocity, reflectors can be imaged correctly. A simple correction is to use the velocity along the TI-symmetry axis, which effectively maps the bed reflector to its correct position. Application of the correction method to synthetic and field-data examples demonstrate the anisotropy effect on reflector imaging and the effectiveness of the method.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献