Gaussian beam imaging of fractures near the wellbore using sonic logging tools after removing dispersive borehole waves

Author:

Li David1ORCID,Tian Xiao2,Hu Hao1ORCID,Tang Xiao-Ming3ORCID,Fang Xinding4ORCID,Zheng Yingcai1ORCID

Affiliation:

1. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas 77204, USA.(corresponding author);

2. East China University of Technology, Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, Nanchang 330013, China..

3. China University of Petroleum (East China), Dongying, China..

4. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas 77204, USA and Southern University of Science and Technology, Shenzhen, China..

Abstract

The ability to image near-wellbore fractures is critical for wellbore integrity monitoring as well as for energy production and waste disposal. Single-well imaging uses a sonic logging instrument consisting of a source and a receiver array to image geologic structures around a wellbore. We use cross-dipole sources because they can excite waves that can be used to image structures farther away from the wellbore than traditional monopole sources. However, the cross-dipole source also will excite large-amplitude, slowly propagating dispersive waves along the surface of the borehole. These waves will interfere with the formation reflection events. We have adopted a new fracture imaging procedure using sonic data. We first remove the strong amplitude borehole waves using a new nonlinear signal comparison method. We then apply Gaussian beam migration to obtain high-resolution images of the fractures. To verify our method, we first test our method on synthetic data sets modeled using a finite-difference approach. We then validate our method on a field data set collected from a fractured natural gas production well. We are able to obtain high-quality images of the fractures using Gaussian beam migration compared with Kirchhoff migration for the synthetic and field data sets. We also found that a low-frequency source (around 1 kHz) is needed to obtain a sharp image of the fracture because high-frequency wavefields can interact strongly with the fluid-filled borehole.

Funder

University of Houston Technology Gap fund

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3