Long‐wave elastic anisotropy in transversely isotropic media

Author:

Berryman James G.1

Affiliation:

1. Bell Telephone Laboratories 4C-244A, Whippany Road, Whippany, NJ 07981

Abstract

Compressional waves in horizontally layered media exhibit very weak long‐wave anisotropy for short offset seismic data within the physically relevant range of parameters. Shear waves have much stronger anisotropic behavior. Our results generalize the analogous results of Krey and Helbig (1956) in several respects: (1) The inequality [Formula: see text] derived by Postma (1955) for periodic isotropic, two‐layered media is shown to be valid for any homogeneous, transversely isotropic medium; (2) a general perturbation scheme for analyzing the angular dependence of the phase velocity is formulated and readily yields Krey and Helbig’s results in limiting cases; and (3) the effects of relaxing the assumption of constant Poisson’s ratio σ are considered. The phase and group velocities for all three modes of elastic wave propagation are illustrated for typical layered media with (1) one‐quarter limestone and three‐quarters sandstone, (2) half‐limestone and half‐sandstone, and (3) three‐quarters limestone and one‐quarter sandstone. It is concluded that anisotropic effects are greatest in areas where the layering is quite thin (10–50 ft), so that the wavelengths of the seismic signal are greater than the layer thickness and the layers are of alternately high‐ and low‐velocity materials.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3