Influencing Factors of Shear Wave Radiation of a Dipole Source in a Fluid-Filled Borehole

Author:

Wang Hao,Wang Caizhi,Liu Yingming,Xia Shouji,Fu Haicheng,Yuan Ye,Bie Kang,Li Xincheng

Abstract

In shear wave far detection logging, dipole-source radiation is the main factor influencing the amplitude of the reflected shear waves. In this paper, a method is derived with the far-field asymptotic solution to calculate the dipole-source radiation of shear waves in a fluid-filled borehole. Then the dipole-source radiation of the shear waves is simulated under both low and high frequencies. In addition, the influences of formation elastic parameters on the dipole-source radiation of the shear waves are analyzed and the variations of the radiation characteristics of the shear wave with source main frequency and borehole radius are compared. Results show that the density and compressional wave velocity of the formation have little effect on the dipole-source radiation of the shear waves. However, the shear wave velocity not only affects the shear wave amplitude radiated to the formation by the dipole source (radiation performance), but also affects the energy distribution of the shear wave at different locations in space (radiation direction). The dipole source has better radiation performance and radiation coverage at low frequency and the optimal excitation frequency in different formations is very close, which is good for the application of this technology under different circumstances. At low frequency, the borehole has little influence on the dipole-source radiation, no matter how large the borehole radius is. However, at high frequency, the borehole modulation of the dipole-source radiation cannot be ignored, especially at large borehole radius.

Funder

China National Petroleum Corporation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference22 articles.

1. Imaging of near‐borehole structure using full‐waveform sonic data

2. Borehole Acoustic Reflection Survey Experiments in Horizontal Wells for Accurate Well Positioning;Yamamoto;Proceedings of the SPE CIM International Conference on Horizontal Well Technology,2000

3. Application of Remote Exploration Acoustic Reflection Imaging Logging Technique in Fractured Reservoir;Chai;Well Logging Technol.,2009

4. Imaging near-borehole structure using acoustic logging data with pre-stack F−K migration;Zheng;Proceedings of the SEG Annual Meeting,2005

5. Borehole sonic reflection imaging by finite difference reverse time migration;Li;Proceedings of the SEG Annual Meeting,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3