Rock-physics machine learning toolkit for joint litho-fluid facies classification and compaction modeling

Author:

Beloborodov Roman1,Gunning James2,Pervukhina Marina2,Waters Kester3,Huntbatch Nick3

Affiliation:

1. CSIRO Deep Earth Imaging Future Science Platform, Kensington, Western Australia..

2. CSIRO, Perth, Western Australia..

3. Ikon Science, London, UK..

Abstract

Correct lithofacies interpretation sourced from wireline log data is an essential source of prior information for joint seismic inversion for facies and impedances, among other applications. However, this information is difficult to interpret or extract manually due to the multivariate and high dimensionality of wireline logs. Facies inference is also challenging for traditional clustering-based approaches because pervasive compaction trends affect a number of petrophysical measurements simultaneously. Another common pitfall in automated clustering approaches is the inability to account for underlying diagenetic processes that correlate with depth. Here, we address these challenges by introducing a rock-physics machine learning toolkit for joint litho-fluid facies classification. The litho-fluid types are inferred from the borehole data within the objective framework of a maximum-likelihood approach for latent facies variables and rock-physics model parameters, explicitly accounting for compaction and depth effects. The inference boils down to an expectation-maximization (EM) algorithm with strong spatial coupling. Each litho-fluid type is associated with an instance of a particular rock-physics model with a unique set of fitting parameters, constrained to a physically reasonable range. These fitting parameters in turn are inferred using bound-constrained optimization as part of the EM algorithm. Outputs produced by the toolkit can be used directly to specify the necessary prior information for seismic inversion, including per-facies rock-physics models and facies proportions. We present an example application of the tool to real borehole data from the North West Shelf of Australia to illustrate the method and discuss its characteristic features in depth.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference40 articles.

1. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics

2. Barron, J. T., 2017, A general and adaptive robust loss function: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4331–4339.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3