Automated lithofluid and facies classification in well logs: The rock-physics perspective

Author:

Beloborodov Roman1ORCID,Gunning James2ORCID,Pervukhina Marina3ORCID,Hauser Juerg4ORCID,Clennell Michael Ben3ORCID,Mur Alan5ORCID,Li Vladimir6ORCID

Affiliation:

1. CSIRO Energy, Kensington, Australia. (corresponding author)

2. CSIRO Energy, Clayton, Australia.

3. CSIRO Energy, Kensington, Australia.

4. CSIRO Mineral Resources, Acton, Australia.

5. IkonScience, Houston, Texas, USA.

6. IkonScience, Surbiton, UK.

Abstract

Although an accurate lithofluid and facies interpretation from wireline log data is critical for applications such as joint facies and impedance inversion of seismic data, extracting this information manually is challenging due to the logs’ complexity and the need to combine information from different logs. Traditional clustering methods also struggle with lithofluid type inference due to differing depth trends in petrophysical rock properties stemming from compaction and diagenesis. We introduce a rock-physics machine-learning workflow that automates lithofluid classification and property depth trend modeling to address these challenges. This workflow uses a maximum-likelihood approach, explicitly accounting for depth-related effects via rock-physics models (RPMs) to infer lithofluid types from borehole data. It uses a robust expectation-maximization algorithm to associate each lithofluid type with a specific RPM instance constrained within physically reasonable bounds. The workflow directly outputs lithofluid type proportions and type-specific RPMs with associated uncertainties, providing essential prior information for seismic inversion.

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3