Decision Tree Ensembles for Automatic Identification of Lithology

Author:

Desouky Mahmoud1,Alqubalee Abdullah1,Gowida Ahmed1

Affiliation:

1. King Fahd University of Petroleum & Minerals

Abstract

Abstract Lithology types identification is one of the processes geoscientists rely on to understand the subsurface formations and better evaluate the quality of reservoirs and aquifers. However, direct lithological identification processes usually require more effort and time. Therefore, researchers developed several machine learning models based on well-logging data to avoid challenges associated with direct lithological identification and increase identification accuracy. Nevertheless, high uncertainty and low accuracy are commonly encountered issues due to the heterogeneous nature of lithology types. This work aims to employ decision tree ensemble techniques to predict the lithologies more accurately in time saving and cost-efficient manner, accounting for the uncertainty. This study investigated the real-world well logs dataset from the public Athabasca Oil Sands Database to identify and extract the relevant features. Then, we conducted a thorough training using grid search to optimize the hyperparameters of the ensemble decision tree models. This paper evaluated two ensemble techniques: random forest (RF) and extreme gradient boosting (XGB). We picked metrics such as accuracy, precision, and recall to assess the developed models' performance using 5-fold cross-validation. Finally, we performed a chi-squared test to test our hypothesis of the identical performance of the developed models. The XGB and RF models have 94% and 93% accuracy, respectively. Also, the extreme gradient boost model's weighted average recall and precision of 93% and 93% are only 5% and 4% higher than the RF model. In addition, the chi-squared test resulted in a p-value as low as 0.013, suggesting a low probability of difference in both models' performance. Classification of sand and coal formations is more straightforward than sandy shale and cemented sand. The dataset's low representation of sandy shale and cemented sand can be the reason behind their prediction errors. The developed models can classify the studied field lithologies with an overall accuracy of 94%. In addition, there is no statistically significant evidence of a difference in prediction performance between extreme gradient boost and random forest.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3