Formation Lithology Classification: Insights into Machine Learning Methods

Author:

Mohamed Ibrahim Mohamed1,Mohamed Salah2,Mazher Ibrahim3,Chester Pieprzica3

Affiliation:

1. Colorado School of Mines

2. Khalda Petroleum

3. Apache Corp.

Abstract

Abstract With the recent tremendous development in algorithms, computations power and availability of the enormous amount of data, the implementation of machine learning approach has spurred the interest in oil and gas industry and brings the data science and analytics into the forefront of our future energy. The idea of using automated algorithms to determine the rock facies is not new. However, the recent advancement in machine learning methods encourages to further research and revisit the supervised classification tasks, discuss the methodological limits and further improve machine learning approach and classification algorithms in rock facies classification from well-logging measurements. This paper demonstrates training different machine learning algorithms to classify and predict the geological facies using well logs data. Previous and recent research was done using supervised learning to predict the geological facies. This paper compares the results from the supervised learning algorithms, unsupervised learning algorithms as well as a neural network machine learning algorithm. We further propose an integrated approach to dataset processing and feature selection. The well logs data used in this paper are for wells in the Anadarko Basin, Kansas. The dataset is divided into training, testing and evaluating wells used for testing the model. The objective is to evaluate the algorithms and limitations of each algorithm. We speculate that a simple supervised learning algorithm can yield score higher than neural network algorithm depending on the model parameter selected. Analysis for the parameter selection was done for all the models, and the optimum parameter was used for the corresponding classifier. Our proposed neural network algorithm results score slightly higher than the supervised learning classifiers when evaluated with the cross-validation test data. It is concluded that it is important to calculate the accuracy within the adjacent layers as there are no definite boundaries between the layers. Our results indicate that calculating the accuracy of prediction with taking account the adjacent layers, yield higher accuracy than calculating accuracy within each point. The proposed feed-forward neural network classifier trains using backpropagation (gradient descent) provides accuracy within adjacent layers of 88%. Our integrated approach of data processing along with the neural network classifier provides more satisfactory results for the classification and prediction problem. Our finding indicates that utilizing simple supervised learning with an optimum model parameter yield comparable scores as a complex neural network classifier.

Publisher

SPE

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3