Identifying Litho-Fluid Facies Using Machine Learning: A Case Study of Niger Delta Sandstone Reservoirs

Author:

Adeeyo Y. A.1,Osinaike A. A.1,Adun G. O.1,Menkiti H.1

Affiliation:

1. Asharami Energy, Nigeria

Abstract

AbstractTo minimize uncertainties in reservoir characterization and modeling workflows, an accurate definition of reservoir heterogeneity, including lithologic and pore fluid variations, is required. Particularly because reservoir heterogeneity limits the spatial distribution of petrophysical and elastic properties used to understand the reservoir system or quantify its resource or storage potential. Traditionally, variations in reservoir rock and fluid properties are identified by interpreting depositional patterns and fluid content from core or cutting samples, or by applying statistical rock physics techniques to elastic well log data. However, collecting core data is costly, and both methods can be subjective, necessitating expert knowledge of sedimentological and rock physical principles to produce meaningful classification results.To overcome these limitations, we present a cost-effective and comparatively objective framework for identifying litho-fluid facies (LFF) using machine learning (ML) algorithms. Various statistical ML techniques were used for data-driven delineation of the LFF in the Niger Delta siliciclastic formation from a suite of commonly available geophysical well logs. The study followed a two-part process to arrive at the desired outcome. First, the target classes—clean hydrocarbon sand, shaly hydrocarbon sand, brine sand, and shale—were generated using a Dirichlet Process Gaussian Mixture Model (DPGMM) with Variational Inference (VI), an unsupervised clustering technique. These classes were subjected to probabilistic thresholding based on their log-likelihood and silhouette coefficient scores to obtain high-quality training samples. Following that, the training samples were used to construct supervised multiclass predictive models capable of generalizing the target LFF. Several classification metrics and charts were used to assess the accuracy and speed of the models to determine the model with the best predictive and computational performance.This ultimately revealed that the best-performing model was a single decision tree classifier with perfect metric scores, significantly high prediction probabilities, and minimal computational time. The random forest and gradient boosting classifiers performed similarly well on the task. Moreover, the use of analytical and statistical techniques throughout the process facilitated an objective and accurate differentiation of the rock and fluid types.The ability of the models to generalize to unseen data in a new well location with high predictive confidence makes it possible to characterize the spatially distributed facies in the study area with minimized uncertainty. Hence, we recommend the adoption of this framework for rapid and accurate LFF identification.

Publisher

OTC

Reference43 articles.

1. A new look at the statistical model identification;Akaike;IEEE Transactions on Automatic Control,1974

2. Analysis of Different Statistical Models in Probabilistic Joint Estimation of Porosity and Litho-Fluid Facies from Acoustic Impedance Values;Aleardi;Geosciences,2018

3. Attias, H. 1999. A Variational Bayesian Framework for Graphical Models. Proc., 12th International Conference on Neural Information Processing Systems, Denver, Colorado, 29 November–4 December, 209–215. https://dl.acm.org/doi/10.5555/3009657.3009687.

4. Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk;Avseth,2005

5. Rock-physics machine learning toolkit for joint litho-fluid facies classification and compaction modeling;Beloborodov;The Leading Edge,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3