AVO inversion of BSRs in marine gas hydrate studies

Author:

Chen Marc-André P.123,Riedel Michael123,Hyndman Roy D.123,Dosso Stan E.123

Affiliation:

1. University of Victoria, School of Earth and Ocean Sciences, Victoria, British Columbia, Canada and Pacific Geoscience Centre, Sidney, British Columbia, Canada. .

2. McGill University, Department of Earth and Planetary Sciences, Montreal, Quebec, Canada. .

3. University of Victoria, School of Earth and Ocean Sciences, Victoria, British Columbia, Canada. .

Abstract

We examine the usefulness of amplitude versus offset (AVO) analysis of bottom-simulating reflections (BSRs) for estimating associated marine gas hydrate and free-gas concentrations. A nonlinear Bayesian inversion is applied to estimate marginal probability distributions (MPDs) of physical parameters at a BSR interface, which are related to overlying gas hydrate and underlying free-gas concentrations via rock physics modeling. The problem is constrained further by prior information and re-parameterization of inversion results. Inversion of BSR AVO data from offshore Vancouver Island, Canada, shows that gas hydrate and free-gas concentrations are, respectively, 0%–23% and0%–2% of the pore volume, at a 90% credibility level. This result indicates that the data do not provide sufficient information to independently resolve gas hydrate and free-gas concentrations to useful accuracy. The study is directed primarily at AVO for gas-hydrate-related BSRs, but may have important applicability in testing the degree of constraint of formation characteristics in other AVO studies. The inversion method is applied also to syn-thetic AVO data generated from Ostrander’s gas-sand model. In this case, MPDs sufficiently constrain the relationship between P- and S-wave velocities in the sandstone unit to determine if it is gas-charged. The variable degree of model constraint obtained in this AVO study highlights the need to include rigorous quantita-tive uncertainty analysis in all AVO studies.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3