Seismic reservoir mapping from 3‐D AVO in a North Sea turbidite system

Author:

Avseth P.1,Mukerji T.1,Jørstad A.1,Mavko G.1,Veggeland T.2

Affiliation:

1. Stanford University, Rock Physics Laboratory, Department of Geophysics, Stanford, California 94305‐2215

2. Norsk Hydro ASA, N‐5020 Bergen, Norway

Abstract

We present a methodology for estimating uncertainties and mapping probabilities of occurrence of different lithofacies and pore fluids from seismic amplitudes, and apply it to a North Sea turbidite system. The methodology combines well log facies analysis, statistical rock physics, and prestack seismic inversion. The probability maps can be used as input data in exploration risk assessment and as constraints in reservoir modeling and performance forecasting. First, we define seismic‐scale sedimentary units which we refer to as seismic lithofacies. These facies represent populations of data (clusters) that have characteristic geologic and seismic properties. In the North Sea field presented in this paper, we find that unconsolidated thick‐bedded clean sands with water, plane laminated thick‐bedded sands with oil, and pure shales have very similar acoustic impedance distributions. However, the [Formula: see text] ratio helps resolve these ambiguities. We establish a statistically representative training database by identifying seismic lithofacies from thin sections, cores, and well log data for a type well. This procedure is guided by diagnostic rock physics modeling. Based on the training data, we perform multivariate classification of data from other wells in the area. From the classification results, we can create cumulative distribution functions of seismic properties for each facies. Pore fluid variations are accounted for by applying the Biot‐Gassmann theory. Next, we conduct amplitude‐variation‐with‐offset (AVO) analysis to predict seismic lithofacies from seismic data. We assess uncertainties in AVO responses related to the inherent natural variability of each seismic lithofacies using a Monte Carlo technique. Based on the Monte Carlo simulation, we generate bivariate probability density functions (pdfs) of zero‐offset reflectivity [R(0)] versus AVO gradient (G) for different facies combinations. By combining R(0) and G values estimated from 2‐D and 3‐D seismic data with the bivariate pdfs estimated from well logs, we use both discriminant analysis and Bayesian classification to predict lithofacies and pore fluids from seismic amplitudes. The final results are spatial maps of the most likely facies and pore fluids, and their occurrence probabilities. These maps show that the studied turbidite system is a point‐sourced submarine fan in which thick‐bedded clean sands are present in the feeder‐channel and in the lobe channels, interbedded sands and shales in marginal areas of the system, and shales outside the margins of the turbidite fan. Oil is most likely present in the central lobe channel and in parts of the feeder channel.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference45 articles.

1. Addy, S., 1998, Seismic facies map using neural networks: An example from Sligo limestone in Lavaca County, Texas: Ann. Mtg., Am. Assn. Petr. Geol., Extended Abstracts, A9.

2. Avseth, P., 2000, Combining rock physics and sedimentology for seismic reservoir characterization in North Sea turbidite systems: Ph.D. thesis, Stanford Univ.

3. Rock physics diagnostic of north sea sands: Link between microstructure and seismic properties

4. Rock physics diagnostic of north sea sands: Link between microstructure and seismic properties

5. Long-wave elastic anisotropy produced by horizontal layering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3