Abstract
Characterizing gas hydrate-bearing marine sediments using seismic methods is essential for locating potential hydrate resources. However, most existing pre-stack seismic inversion methods estimate the properties of sediments containing gas hydrates without considering specific characteristics associated with gas hydrate occurrences. In the present study, a pore-filling–solid matrix decoupling amplitude variation with offset (AVO) formula is proposed to represent seismic reflectivity in terms of properties associated with gas hydrates. Based on the rock physics relationships of solid substitution, the parameters introduced into the decoupling AVO equation estimate the concentration of gas hydrates with different occurrences, including pore fillings mixed with water and solid components forming part of the dry sediment frame. A theoretical model test indicates that seismic attributes obtained with the decoupling AVO inversion are superior to the conventional wave velocities-related properties in predicting gas hydrate saturations. A realistic model test further validates the applicability of the proposed method in characterizing a gas hydrate system with varying concentrations and layer thickness. By adjusting the tuning parameters, the configurations and concentrations of the gas hydrate system can be identified using the obtained attributes. Therefore, the presented method provides a useful tool for the characterization of gas hydrate-bearing sediments.
Funder
National Natural Science Foundation of China
CNPC Science Research and Technology Development Project
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献