High-Resolution Seismic Characterization of Gas Hydrate Reservoir Using Wave-Equation-Based Inversion
Author:
Shao Jie,Wang Yibo,Wang Yanfei,Yan Hongyong
Abstract
The high-resolution seismic characterization of gas hydrate reservoirs plays an important role in the detection and exploration of gas hydrate. The conventional AVO (amplitude variation with offset) method is based on a linearized Zoeppritz equation and utilizes only the reflected wave for inversion. This reduces the accuracy and resolution of the inversion properties and results in incorrect reservoir interpretation. We have studied a high-resolution wave-equation-based inversion method for gas hydrate reservoirs. The inversion depends on the scattering integral wave equation that describes a nonlinear relationship between the seismic wavefield and the elastic properties of the subsurface medium. In addition to the reflected wave, it considers more wavefields including the multiple scattering and transmission during inversion to improve the subsurface illumination, so as to enhance the accuracy and resolution of the inversion properties. The results of synthetic data from Pearl River Mouth Basin, South China Sea, demonstrate the validity and advantages of the wave-equation-based inversion method. It can effectively improve the resolution of inversion results compared to the conventional AVO method. In addition, it has good performance in the presence of noise, which makes it a promising method for field data.
Funder
The Key Research Program of the Institute of Geology & Geophysics, CAS
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献