The effect of pore pressure depletion and injection cycles on ultrasonic velocity and quality factor in a quartz sandstone

Author:

Frempong P.123,Donald A.123,Butt S. D.123

Affiliation:

1. Formerly Dalhousie University, Department of Mining and Metallurgical Engineering, Halifax, Nova Scotia, Canada; presently Alberta Energy and Utilities Board, Fort McMurray, Alberta, Canada.

2. Formerly Dalhousie University, Department of Mining and Metallurgical Engineering, Halifax, Nova Scotia, Canada; presently Schlumberger Data and Consulting Services, Denver, Colorado.

3. Formerly Dalhousie University, Department of Mining and Metallurgical Engineering, Halifax, Nova Scotia, Canada; presently Memorial University of Newfoundland, Faculty of Engineering and Applied Science, Offshore Oil and Gas Engineering Group, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada.

Abstract

Passing seismic waves generate transient pore-pressure changes that influence the velocity and attenuation characteristics of porous rocks. Compressional ultrasonic wave velocities [Formula: see text] and quality factors [Formula: see text] in a quartz sandstone were measured under cycled pore pressure and uniaxial strain conditions during a laboratory simulated injection and depletion process. The objectives were to study the influence of cyclical loading on the acoustic characteristics of a reservoir sandstone and to evaluate the potential to estimate pore-fluid pressure from acoustic measurements. The values of [Formula: see text] and [Formula: see text] were confirmed to increase with effective stress increase, but it was also observed that [Formula: see text] and [Formula: see text] increased with increasing pore pressure at constant effective stress. The effective stress coefficient [Formula: see text] was found to be less thanone and dependent on the pore pressure, confining stress, and load. At low pore pressures, [Formula: see text] approached one and reduced nonlinearly at high pore pressures. The change in [Formula: see text] and [Formula: see text] with respect to pore pressure was more pronounced at low versus high pore pressures. However, the [Formula: see text] variation with pore pressure followed a three-parameter exponential rise to a maximum limit whereas [Formula: see text] had no clear limit and followed a two-parameter exponential growth. Axial strain measurements during the pore-pressure depletion and injection cycles indicated progressive viscoelastic deformation in the rock. This resulted in an increased influence on [Formula: see text] and [Formula: see text] with increasing pore-pressure cycling. The value [Formula: see text] was more sensitive in responding to the loading cycle and changes in pore pressures than [Formula: see text]; thus, [Formula: see text] may be a better indicator for time-lapse reservoir monitoring than [Formula: see text]. However, under the experimental conditions, [Formula: see text] was unstable and difficult to measure at low effective stress.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3