Effect of Temperature on Stiffness of Sandstones from the Deep North Sea Basin

Author:

Orlander TobiasORCID,Andreassen Katrine AllingORCID,Fabricius Ida LykkeORCID

Abstract

AbstractDevelopment of high-pressure, high-temperature (HPHT) petroleum reservoirs situated at depths exceeding 5 km and in situ temperature of 170 °C increases the demand for theories and supporting experimental data capable of describing temperature effects on rock stiffness. With the intention of experimentally investigating temperature effects on stiffness properties, we investigated three sandstones from the deep North Sea Basin. As the North Sea Basin is presently undergoing substantial subsidence, we assumed that studied reservoir sandstones have never experienced higher temperature than in situ. We measured ultrasonic velocities in a low- and high-stress regime, and used mass density and stress–strain curves to derive, respectively, dynamic and static elastic moduli. We found that in both regimes, the dry sandstones stiffens with increasing testing temperature and assign expansion of minerals as a controlling mechanism. In the low-stress regime with only partial microcrack closure, we propose closure of microcracks as the stiffening mechanism. In the high-stress regime, we propose that thermal expansion of constituting minerals increases stress in grain contacts when the applied stress is high enough for conversion of thermal strain to thermal stress, thus leading to higher stiffness at in situ temperature. We then applied an extension of Biot’s effective stress equation including a non-isothermal term from thermoelastic theory and explain test results by adding boundary conditions to the equations.

Funder

DONG Energy (DK); Mærsk Oil; Innovation Fund Denmark

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3