Influence of coupled water and thermal treatments on the fracture characteristics of a typical sandstone

Author:

Luo Yi,Zhong Haohong,Ren Li,Li Cunbao

Abstract

AbstractUnderstanding the fracture behavior of rock after coupled water and thermal environment is important for many geotechnical projects. This study examines the influence of coupled water and thermal treatments on the fracture toughness and characteristics of a typical sandstone under mode I and mode II loading conditions. Notched deep beam (NDB) specimens were utilized and subjected to soaking treatments at various water temperatures (23 °C, 60 °C, and 99 °C). The experimental results indicate a significant reduction in both mode I and mode II fracture toughness values, with reductions ranging from 15.4% to 13.2% for mode I and 26.1% to 8.9% for mode II respectively. As the water temperatures increase, a slightly rising trend is observed in both mode I and mode II fracture toughness within the examined temperature range. Sandstone specimens displayed typical brittle fracture characteristics at lower soaking temperatures. For mode I specimens, an increase in ductility was evident with higher soaking temperatures, while the ductile behavior is less pronounced in the mode II specimens. Based on the Maximum Tangential Stress (MTS) criterion and the Generalized Maximum Tangential Stress (GMTS) criterion, the predicted values of mode II fracture toughness and the fracture process zone (FPZ) were discussed. The results show that both the GMTS and MTS criteria exhibit inaccuracies in predicting the mode II fracture toughness of sandstone treated at different soaking water temperatures. However, the GMTS criterion, which incorporates T-stress, demonstrates smaller errors compared to the MTS criterion. The study shows that the radius r0 of the fracture process zone is not a constant under both mode I and mode II loading conditions. The calculation of the fracture process zone radius r0 in the GMTS criterion requires further theoretical and experimental study.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3