Static and dynamic effective stress coefficient of chalk

Author:

Alam M. Monzurul12,Fabricius Ida Lykke12,Christensen Helle Foged12

Affiliation:

1. Technical University of Denmark, Department of Civil Engineering, Lyngby, Denmark..

2. Danish Geotechnical Institute (GEO), Lyngby, Denmark..

Abstract

Deformation of a hydrocarbon reservoir can ideally be used to estimate the effective stress acting on it. The effective stress in the subsurface is the difference between the stress due to the weight of the sediment and a fraction (effective stress coefficient) of the pore pressure. The effective stress coefficient is thus relevant for studying reservoir deformation and for evaluating 4D seismic for the correct pore pressure prediction. The static effective stress coefficient [Formula: see text] is estimated from mechanical tests and is highly relevant for effective stress prediction because it is directly related to mechanical strain in the elastic stress regime. The corresponding dynamic effective stress coefficient [Formula: see text] is easy to estimate from density and velocity of acoustic (elastic) waves. We studied [Formula: see text] and [Formula: see text] of chalk from the reservoir zone of the Valhall field, North Sea, and found that [Formula: see text] and [Formula: see text] vary with differential stress (overburden stress-pore pressure). For Valhall reservoir chalk with 40% porosity, [Formula: see text] ranges between 0.98 and 0.85 and decreases by 10% if the differential stress is increased by 25 MPa. In contrast, for chalk with 15% porosity from the same reservoir, [Formula: see text] ranges between 0.85 and 0.70 and decreases by 5% due to a similar increase in differential stress. Our data indicate that [Formula: see text] measured from sonic velocity data falls in the same range as for [Formula: see text], and that [Formula: see text] is always below unity. Stress-dependent behavior of [Formula: see text] is similar (decrease with increasing differential stress) to that of [Formula: see text] during elastic deformation caused by pore pressure buildup, for example, during waterflooding. By contrast, during the increase in differential stress, as in the case of pore pressure depletion due to production, [Formula: see text] increases with stress while [Formula: see text] decreases.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3