Detection and picking of shear wave arrival for stiffness evaluation of highly porous chalk

Author:

Proestakis Ermis1ORCID,Christensen Helle F.2,Meireles Leonardo T. P.1ORCID,Storebø Einar M.1,Shamsolhodaei Amirhossein3,Orlander Tobias4ORCID

Affiliation:

1. Department of Environmental and Resource Engineering Technical University of Denmark Lyngby Denmark

2. Rambøll DK Copenhagen Denmark

3. Geo Lyngby Denmark

4. Danish Offshore Technology Centre Technical University of Denmark Lyngby Denmark

Abstract

AbstractElastic wave velocities of compressional and shear waves propagating through sedimentary rocks are often coupled with information of bulk density to derive the rock stiffness. Acquiring the transit time of compressional and shear waves often involves manual picking of wave arrival times from wave trains recorded in the laboratory or by well‐logging tools. Picking the compressional wave arrival time is commonly accepted as straightforward. Oppositely, detecting the shear wave arrival and picking its arrival time is often troublesome because the transmitted shear wave partly converts to compressional waves and back to a secondary shear wave, concealing the transmitted shear wave arrival in the wave train. In laboratory settings, we illustrate the difficulty of shear wave detection in wave trains recorded on highly porous chalk plug samples from the Danish North Sea Basin. Wave trains were recorded on plugs dry, Tap‐water or Isopar‐L saturated during uniaxial strain compaction. The recorded shear wave trains showed two distinct features, which could be interpreted as the transmitted shear wave first arrival; we denoted them as early and late arrivals. However, as only one feature can mark the arrival of the transmitted shear wave, we propose a semi‐empirical disclosure strategy combining a graphical representation of stacked wave trains with rock physical modelling. By stacking recorded wave trains in a graphical strain–time–amplitude domain, we demonstrate that an early shear wave feature marks a converted shear to compressional to shear wave and not the transmitted shear wave. We used physical modelling to identify early shear wave features and illustrate the consequences of adopting a falsely interpreted shear wave on stiffness properties.

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3