Affiliation:
1. Department of Environmental and Resource Engineering Technical University of Denmark Lyngby Denmark
2. Rambøll DK Copenhagen Denmark
3. Geo Lyngby Denmark
4. Danish Offshore Technology Centre Technical University of Denmark Lyngby Denmark
Abstract
AbstractElastic wave velocities of compressional and shear waves propagating through sedimentary rocks are often coupled with information of bulk density to derive the rock stiffness. Acquiring the transit time of compressional and shear waves often involves manual picking of wave arrival times from wave trains recorded in the laboratory or by well‐logging tools. Picking the compressional wave arrival time is commonly accepted as straightforward. Oppositely, detecting the shear wave arrival and picking its arrival time is often troublesome because the transmitted shear wave partly converts to compressional waves and back to a secondary shear wave, concealing the transmitted shear wave arrival in the wave train. In laboratory settings, we illustrate the difficulty of shear wave detection in wave trains recorded on highly porous chalk plug samples from the Danish North Sea Basin. Wave trains were recorded on plugs dry, Tap‐water or Isopar‐L saturated during uniaxial strain compaction. The recorded shear wave trains showed two distinct features, which could be interpreted as the transmitted shear wave first arrival; we denoted them as early and late arrivals. However, as only one feature can mark the arrival of the transmitted shear wave, we propose a semi‐empirical disclosure strategy combining a graphical representation of stacked wave trains with rock physical modelling. By stacking recorded wave trains in a graphical strain–time–amplitude domain, we demonstrate that an early shear wave feature marks a converted shear to compressional to shear wave and not the transmitted shear wave. We used physical modelling to identify early shear wave features and illustrate the consequences of adopting a falsely interpreted shear wave on stiffness properties.
Subject
Geochemistry and Petrology,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献