Simple is best: A single-CNN method for classifying remote sensing images

Author:

Song Huaxiang,Zhou Yong

Abstract

<abstract> <p>Recently, researchers have proposed a lot of methods to boost the performance of convolutional neural networks (CNNs) for classifying remote sensing images (RSI). However, the methods' performance improvements were insignificant, while time and hardware costs increased dramatically due to re-modeling. To tackle this problem, this study sought a simple, lightweight, yet more accurate solution for RSI semantic classification (RSI-SC). At first, we proposed a set of mathematical derivations to analyze and identify the best way among different technical roadmaps. Afterward, we selected a simple route that can significantly boost a single CNN's performance while maintaining simplicity and reducing costs in time and hardware. The proposed method, called RE-EfficientNet, only consists of a lightweight EfficientNet-B3 and a concise training algorithm named RE-CNN. The novelty of RE-EfficientNet and RE-CNN includes the following: First, EfficientNet-B3 employs transfer learning from ImageNet-1K and excludes any complicated re-modeling. It can adequately utilize the easily accessible pre-trained weights for time savings and avoid the pre-training effect being weakened due to re-modeling. Second, RE-CNN includes an effective combination of data augmentation (DA) transformations and two modified training tricks (TTs). It can alleviate the data distribution shift from DA-processed training sets and make the TTs more effective through modification according to the inherent nature of RSI. Extensive experimental results on two RSI sets prove that RE-EfficientNet can surpass all 30 cutting-edge methods published before 2023. It gives a remarkable improvement of 0.50% to 0.75% in overall accuracy (OA) and a 75% or more reduction in parameters. The ablation experiment also reveals that RE-CNN can improve CNN OA by 0.55% to 1.10%. All the results indicate that RE-EfficientNet is a simple, lightweight and more accurate solution for RSI-SC. In addition, we argue that the ideas proposed in this work about how to choose an appropriate model and training algorithm can help us find more efficient approaches in the future.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3