ERKT-Net: Implementing Efficient and Robust Knowledge Distillation for Remote Sensing Image Classification

Author:

Song Huaxiang,Li Yafang,Li Xiaowen,Zhang Yuxuan,Zhu Yangyan,Zhou Yong

Abstract

The classification of Remote Sensing Images (RSIs) poses a significant challenge due to the presence of clustered ground objects and noisy backgrounds. While many approaches rely on scaling models to enhance accuracy, the deployment of RSI classifiers often requires substantial computational and storage resources, thus necessitating the use of lightweight algorithms. In this paper, we present an efficient and robust knowledge transfer network named ERKT-Net, which is designed to provide a lightweight yet accurate Convolutional Neural Network (CNN) classifier. This method utilizes innovative yet simple concepts to better accommodate the inherent nature of RSIs, thereby significantly improving the efficiency and robustness of traditional Knowledge Distillation (KD) techniques developed on ImageNet-1K. We evaluated ERKT-Net on three benchmark RSI datasets and found that it demonstrated superior accuracy and a very compact volume compared to 40 other advanced methods published between 2020 and 2023. On the most challenging NWPU45 dataset, ERKT-Net outperformed other KD-based methods with a maximum Overall Accuracy (OA) value of 22.4%. Using the same criterion, it also surpassed the first-ranked multi-model method with a minimum OA value of 0.7 but presented at least an 82% reduction in parameters. Furthermore, ablation experiments indicated that our training approach has significantly improved the efficiency and robustness of classic DA techniques. Notably, it can reduce the time expenditure in the distillation phase by at least 80%, with a slight sacrifice in accuracy. This study confirmed that a logit-based KD technique can be more efficient and effective in developing lightweight yet accurate classifiers, especially when the method is tailored to the inherent characteristics of RSIs.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3