MBC-Net: long-range enhanced feature fusion for classifying remote sensing images

Author:

Song HuaxiangORCID

Abstract

PurposeClassification of remote sensing images (RSI) is a challenging task in computer vision. Recently, researchers have proposed a variety of creative methods for automatic recognition of RSI, and feature fusion is a research hotspot for its great potential to boost performance. However, RSI has a unique imaging condition and cluttered scenes with complicated backgrounds. This larger difference from nature images has made the previous feature fusion methods present insignificant performance improvements.Design/methodology/approachThis work proposed a two-convolutional neural network (CNN) fusion method named main and branch CNN fusion network (MBC-Net) as an improved solution for classifying RSI. In detail, the MBC-Net employs an EfficientNet-B3 as its main CNN stream and an EfficientNet-B0 as a branch, named MC-B3 and BC-B0, respectively. In particular, MBC-Net includes a long-range derivation (LRD) module, which is specially designed to learn the dependence of different features. Meanwhile, MBC-Net also uses some unique ideas to tackle the problems coming from the two-CNN fusion and the inherent nature of RSI.FindingsExtensive experiments on three RSI sets prove that MBC-Net outperforms the other 38 state-of-the-art (STOA) methods published from 2020 to 2023, with a noticeable increase in overall accuracy (OA) values. MBC-Net not only presents a 0.7% increased OA value on the most confusing NWPU set but also has 62% fewer parameters compared to the leading approach that ranks first in the literature.Originality/valueMBC-Net is a more effective and efficient feature fusion approach compared to other STOA methods in the literature. Given the visualizations of grad class activation mapping (Grad-CAM), it reveals that MBC-Net can learn the long-range dependence of features that a single CNN cannot. Based on the tendency stochastic neighbor embedding (t-SNE) results, it demonstrates that the feature representation of MBC-Net is more effective than other methods. In addition, the ablation tests indicate that MBC-Net is effective and efficient for fusing features from two CNNs.

Publisher

Emerald

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient knowledge distillation for remote sensing image classification: a CNN-based approach;International Journal of Web Information Systems;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3