Quantitative regularization in robust vision transformer for remote sensing image classification

Author:

Song Huaxiang1ORCID,Yuan Yuxuan1,Ouyang Zhiwei1,Yang Yu1,Xiang Hui1

Affiliation:

1. College of Geography Science and Tourism Hunan University of Arts and Science Changde Hunan China

Abstract

AbstractVision Transformers (ViTs) are exceptional at vision tasks. However, when applied to remote sensing images (RSIs), existing methods often necessitate extensive modifications of ViTs to rival convolutional neural networks (CNNs). This requirement significantly impedes the application of ViTs in geosciences, particularly for researchers who lack the time for comprehensive model redesign. To address this issue, we introduce the concept of quantitative regularization (QR), designed to enhance the performance of ViTs in RSI classification. QR represents an effective algorithm that adeptly manages domain discrepancies in RSIs and can be integrated with any ViTs in transfer learning. We evaluated the effectiveness of QR using three ViT architectures: vanilla ViT, Swin‐ViT and Next‐ViT, on four datasets: AID30, NWPU45, AFGR50 and UCM21. The results reveal that our Next‐ViT model surpasses 39 other advanced methods published in the past 3 years, maintaining robust performance even with a limited number of training samples. We also discovered that our ViT and Swin‐ViT achieve significantly higher accuracy and robustness compared to other methods using the same backbone. Our findings confirm that ViTs can be as effective as CNNs for RSI classification, regardless of the dataset size. Our approach exclusively employs open‐source ViTs and easily accessible training strategies. Consequently, we believe that our method can significantly lower the barriers for geoscience researchers intending to use ViT for RSI applications.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ERKT-Net: Implementing Efficient and Robust Knowledge Distillation for Remote Sensing Image Classification;EAI Endorsed Transactions on Industrial Networks and Intelligent Systems;2024-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3