Abstract
<abstract><p>Reservoir computing has emerged as a powerful and efficient machine learning tool especially in the reconstruction of many complex systems even for chaotic systems only based on the observational data. Though fruitful advances have been extensively studied, how to capture the art of hyper-parameter settings to construct efficient RC is still a long-standing and urgent problem. In contrast to the local manner of many works which aim to optimize one hyper-parameter while keeping others constant, in this work, we propose a global optimization framework using simulated annealing technique to find the optimal architecture of the randomly generated networks for a successful RC. Based on the optimized results, we further study several important properties of some hyper-parameters. Particularly, we find that the globally optimized reservoir network has a largest singular value significantly larger than one, which is contrary to the sufficient condition reported in the literature to guarantee the echo state property. We further reveal the mechanism of this phenomenon with a simplified model and the theory of nonlinear dynamical systems.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference21 articles.
1. H. Jaeger, H. Haas, Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication, Science, 304 (2004), 78–80. https://doi.org/10.1126/science.1091277
2. H. Jaeger, The "echo state" approach to analysing and training recurrent neural networks-with an erratum note, German National Research Center for Information Technology GMD Technical Report, 34 (2001), 148.
3. W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural Comput., 14 (2002), 2531–2560. https://doi.org/10.1162/089976602760407955
4. J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach, Phys. Rev. Lett., 120 (2018), 024102. https://doi.org/10.1103/PhysRevLett.120.024102
5. G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, et al., Recent advances in physical reservoir computing: A review, Neural Networks, 115 (2019), 100–123. https://doi.org/10.1016/j.neunet.2019.03.005
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献