Learning noise-induced transitions by multi-scaling reservoir computing

Author:

Lin ZequnORCID,Lu Zhaofan,Di ZengruORCID,Tang YingORCID

Abstract

AbstractNoise is usually regarded as adversarial to extracting effective dynamics from time series, such that conventional approaches usually aim at learning dynamics by mitigating the noisy effect. However, noise can have a functional role in driving transitions between stable states underlying many stochastic dynamics. We find that leveraging a machine learning model, reservoir computing, can learn noise-induced transitions. We propose a concise training protocol with a focus on a pivotal hyperparameter controlling the time scale. The approach is widely applicable, including a bistable system with white noise or colored noise, where it generates accurate statistics of transition time for white noise and specific transition time for colored noise. Instead, the conventional approaches such as SINDy and the recurrent neural network do not faithfully capture stochastic transitions even for the case of white noise. The present approach is also aware of asymmetry of the bistable potential, rotational dynamics caused by non-detailed balance, and transitions in multi-stable systems. For the experimental data of protein folding, it learns statistics of transition time between folded states, enabling us to characterize transition dynamics from a small dataset. The results portend the exploration of extending the prevailing approaches in learning dynamics from noisy time series.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3