Reservoir computing decoupling memory–nonlinearity trade-off

Author:

Xia Ji1ORCID,Chu Junyu1ORCID,Leng Siyang2ORCID,Ma Huanfei1ORCID

Affiliation:

1. School of Mathematical Sciences, Soochow University 1 , Suzhou 215001, China

2. Academy for Engineering and Technology and Research Institute of Intelligent Complex Systems, Fudan University 2 , Shanghai 200433, China

Abstract

Reservoir computing (RC), a variant recurrent neural network, has very compact architecture and ability to efficiently reconstruct nonlinear dynamics by combining both memory capacity and nonlinear transformations. However, in the standard RC framework, there is a trade-off between memory capacity and nonlinear mapping, which limits its ability to handle complex tasks with long-term dependencies. To overcome this limitation, this paper proposes a new RC framework called neural delayed reservoir computing (ND-RC) with a chain structure reservoir that can decouple the memory capacity and nonlinearity, allowing for independent tuning of them, respectively. The proposed ND-RC model offers a promising solution to the memory–nonlinearity trade-off problem in RC and provides a more flexible and effective approach for modeling complex nonlinear systems with long-term dependencies. The proposed ND-RC framework is validated with typical benchmark nonlinear systems and is particularly successful in reconstructing and predicting the Mackey–Glass system with high time delays. The memory–nonlinearity decoupling ability is further confirmed by several standard tests.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3